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00:00 OPENING CREDITS

00:40 HOST
They say, beauty is in the eye of the beholder.

00:45 HOST
And in fact, what we consider to be beautiful in nature, art, or music often
differs from culture to culture, nationality to nationality-- even generation to
generation.

00:56 HOST

But somehow, there seem to be constants -- commonalities in how
we as human beings “see” beauty. There’s a sense of balance, of order, to
beautiful things. Where does that “sense” come from?

And what does algebra or geometry have to do with it? Can we quantify the
beauty of a butterfly?

01:15 HOST
Welcome to the world of symmetry.

01:23 HOST (V.0.)

Crystals, snowflakes, shells, geometric shapes, flowers... decorative
arts such as the tilings of the Alhambra Palace in Spain - they all
share something besides what we might call 'beauty.’ And that
something that is implicit in the sort of regularity or self-similarity is
symmetry — a symmetry we experience with satisfaction and
pleasure in our everyday lives.

01:49 HOST (V.0.)

Often, that which we experience as symmetry is simply the final
picture. But how did that beautiful, symmetric pattern come into
being? With some close and careful inspection, anyone can see that
symmetry starts with a basic motif which is then manipulated in
time and space.

Mathematicians call such manipulations transformations or, though
this might be confusing, we also call them symmetries, thereby
identifying the outcome with the transformation that got us there.

02:22 HOST (V.0.)

For example, start with a basic shape or pattern, say, the number 4.
If we flip it over like it's on a mirror, we’'re using a kind of
transformation called a reflection. And that reflection creates what
we call bilateral symmetry.

02:36 HOST (V.0.)

This bilateral symmetry seems fundamental to nature, we see it our
bodies, in fact in the form of all sorts of living things. Take the
butterfly: its folded wings are the basic pattern. Opening its wings, it
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performs a reflection, resulting in one of nature’s most beautiful
examples of bilateral symmetry.

02:55

HOST (V.0.)

But visual symmetries are only the tip of the mathematical iceberg.
In fact, there are an uncountable number of types of symmetries,
some we can see and some that we can't, some having to do with
galaxies and others having to do with subatomic particles, some
having to do with magic and others having to do with equations. But
in the beautiful visual symmetries that nature and art present, we
see everything that we need to know...

03:24

HOST (V.0.)

Symmetry is as much about the final pattern, as it is about the
motions that got us to that final pattern. And it's the math of those
motions that we're now interested in.

03:37

HOST

Remember - we said an object or picture is bilaterally symmetric if we can
draw a line through it, what we would call an axis of symmetry, and the two
halves are identical - in the sense that one half can be overlaid on the other
perfectly, with each point finding its exact copy on the other side - each little
fleck and curlicue matched up exactly when I fold the one onto the other.

04:01

HOST (V.0.)

The symmetry that the butterfly reveals and illustrates in opening up
her wings is an example of a mathematical and geometric
transformation that can be used to both generate and characterize
symmetry - it's called a reflection, for the way in which it creates an
image that would appear by reflecting the original in a mirror.

Reflections take place outside the plane of the figure. See how we
needed to actually flip our little icon or motif outside the page in
order to make the mirror image? Now, there are also symmetries
and transformations that take place entirely in the plane of the
image.

04:37

HOST (V.0.)

The simplest of these is a translation. Here we draw an imaginary
line above or below our motif and simply slide cross that line
without rotating or reflecting it. Notice that a translation will be
completely described by how far you move and in what direction you
move it.

04:55

HOST (V.0.)

Another different example is given by a rotation. Here, notice that
the rotation is characterized by how much you rotate as well the
point around which you rotate. The closer the center of rotation, the
tighter the curve that the icon traces out. Now with these three
kinds of symmetries, reflections, translations, and rotations we can
generate other kinds of symmetries too.

05:18

HOST
A famous one is the glide reflection; a symmetry that combines a reflection
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and a translation. A flip and slide equal a glide.

05:28

HOST
Now, using these symmetries, we can form all kinds of patterns. Let's take a
basic motif - we've been using ‘R’ so let’s stay with it for a moment:

05:37

HOST (V.0.)
Start with a reflection, then add a rotation, and then maybe a glide...

If we follow one symmetry by another symmetry, that is ‘compose’
one symmetry with another, we get another symmetry. And what we
end up with can be, well, beautiful.

05:53

HOST (V.0.)

We can compose symmetries along one dimension and end up with a
frieze pattern. We can even expand the symmetries to cover an
entire wall, and if we allowed ourselves to go out to infinity - and
that's something that mathematicians love to do — we can cover the
entire two-dimensional plane with a beautiful and highly symmetric
pattern.

06:14

HOST

Now as we said, symmetries are both the motions that generate a beautiful
pattern like this as well as the properties of some patterns. When we look at
this mesmerizing infinite design, we now see that there are certain
transformations in our bag of symmetries, that when applied to the design
bring it right back on itself, like that. So there’s a set of symmetry
transformations, that leave the entire infinite design unchanged, or “invariant”
is what we say. We call this set the symmetry group of the design.

06:48

HOST

Now the important word here is "group" - a group is a set of symmetries that
behave sort of like the good old integers. Now what I mean by that is I can
take two numbers and add them and get another number. Similarly, I can
take two symmetries, apply them one after another and get another
symmetry. I can take a number and find it's negative and when I add those 2
numbers I get 0. And similarly, I can take a symmetry do its inverse
symmetry and it's as if I did nothing at all! Those simple properties define
what we mean by a group.

07:23

HOST

One of the most beautiful results in all of mathematics is the

characterization or classification of the various possible groups of symmetries
of these infinite planar or linear designs that we've been looking at. Now the
former are called wallpaper groups, speaking to these infinite pieces of
wallpaper that we've been creating, and the latter are called frieze groups.
And while you might think that there are an infinite number of possibilities for
these, the fact is that their structure is really highly constrained and that
effectively, there are only 7 frieze groups and 17 wallpaper groups.

Now, as we've seen, although these groups are finite in number, their
possibilities for creating beauty seem endless and in fact, they've been
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inspiring magnificent geometric artistry for centuries.

08:18

HOST (V.0.)

This is the Alhambra, a combined mosque, palace and fortress built
in Southern Spain in the 13" century. In many ways, it stands as a
monument to the ways in which geometry and algebra were
combined by Islamic artists as a means of spiritual expression.

08:36

HOST (V.0.)

The ancient religious commandment, “"Thou shall not carve idols for
yourselves in the shape of anything in the sky above or on the earth
below or in the waters beneath the earth” was an injunction against
figurative art taken seriously by both Arabs and Hebrews. As a
result, they developed a purely

abstract and geometric art like that exemplified in the Alhambra.

09:00

HOST (V.0.)

Much of the mathematics we study today owes at least as much to
early Islamic mathematicians as it does to the ancient Greeks. In
fact, many of the ideas developed by European Renaissance
mathematicians were first developed by Islamic mathematicians
four centuries earlier.

09:18

HOST (V.0.)

Beginning in the late 8th century, at the House of Wisdom in
Baghdad, Islamic mathematicians translated the Greek texts -- like
Euclid's Elements -- into Arabic.

09:27

HOST (V.0.)

Islamic mathematicians were interested in both pure and applied
mathematics. They used it in astronomy, geography, time-keeping,
and even in the legal arena where they used it to settle the problems
of division of inheritances.

09:41

HOST (V.0.)

After the work of al-Khwarizmi in the 9th century, algebra became a
unifying theory which allowed things like rational numbers,
irrational numbers, and geometric magnitudes, to all be treated as
"algebraic objects" — that is, abstract symbols that stood in for
specific concepts. It is from al-Khwarhizmi that we get the word
“algorithm”, a mathematical process followed by a computer.

10:07

HOST (V.0.)

Omar Khayyam, born in 1048 and mostly known as a poet, was also
a mathematician -- well aware of the power of combining algebra
and geometry.

10:18

HOST (V.0.)

Khayyam wrote that "Whosoever thinks algebra and geometry are
different has thought in vain. Algebras are geometries which are
proved.”

10:26

HOST (V.0.)
Which brings us back to the Alhambra, with its surfaces covered in
repeating geometric motifs, beautifully integrated with poetry

Mathematics Illuminated
Produced by Oregon Public Broadcasting for Annenberg Media © 2008




carved into the walls.

10:36

HOST (V.0.)

“You will say upon seeing it: it is a fortress and, at the same time, a
mansion of happiness. It is a dwelling for the peaceful and the
warrior. It is an artistic work that produces wisdom.”

10:51

HOST

Whether the Islamic designers of the Alhambra understood the mathematics
of symmetry and how is a matter of conjecture. What we do know is that the
work of Islamic mathematicians in spatial symmetry

and algebra foreshadowed the creation of group theory -- a core concept of
symmetry.

11:13

HOST (V.0.)

The study of symmetry allows us to look at geometric things using
algebraic tools. And that lets us both solve difficult problems and
connect things that don’t seem to have anything to do with each
other. How? It’s all about the symmetry groups and something
called invariance...

11:36

Dan Rockmore:

So symmetry, group theory, the math of beauty actually is what it is, is
ultimately a lot of algebra, and so we're lucky to have with us today Rosa
Orellana, professor of mathematics at Dartmouth College, who uses algebra
all over in her work. So, Rosa, thanks for coming today.

11:47

Rosa Orellana:
Thank you for having me, Dan.

11:49

Rockmore:

Well, we've been seeing a lot of beautiful geometric objects and trying to
make sense of them algebraically, but let's sort of make it a little bit more
rigorous with some good examples, shall we?

11:59

Orellana:
We should start with, like, a rectangle and try to explain the ideas because it's
easy to see it there. So actually, let's have a square.

12:08

Rockmore:
Okay, squares-- squares are good because squares are highly symmetric.

12:12

Orellana:
So now the idea, Dan, is that we would want to have a motion in a space that
brings us back to the exact configuration that we have.

12:21

Rockmore:
Okay.

12:22

Orellana:
So, for instance, here is the square. You close your eyes, and I do something
to it, and you open it and you tell me if I did anything.

12:31

Rockmore:
Okay.

12:32

Orellana:
I can rotate it by 90 degrees, and this brings me actually back to the same
configuration.

Mathematics Illuminated
Produced by Oregon Public Broadcasting for Annenberg Media © 2008




12:38

Rockmore:
That's right, that's right. Occupies the same space and looks as if I haven't
moved space at all, in fact.

12:42 Orellana:
Exactly. I can do 180 degrees.

12:45 Orellana:
If you think about it, 90, 180, 360 --

12:50 Orellana:
--you can think 180 is 90+90. So if I do 90 and then I do 90 again, it's the
same as if I would have rotated by 180 degrees, right?

13:02 Rockmore:
That's right, that's right. So you're allowed to compose these moves is what
we would say.

13:05 Orellana:
Yeah.

13:06 Rockmore:
There's a composition.

13:07 Orellana:
Exactly. So this is kind of like when you are doing algebra, you start to realize,
you know, "can I combine these motions so that I get a similar motion?" And
in this case, we want a motion that leaves the square invariant, the same,
right?

13:23 Rockmore:
Yeah, and it's interesting to look at -- I mean, in fact, the square specifies that
there are only particular transformations that are going to leave it alone. Like
if I had rotated that thing by 30 degrees, or you did that, I would know you
had moved it.

13:36 Rockmore:
Okay, so now the square is of course very symmetric, we've said, but you
know, you can kind of reduce its symmetry, right? I mean, reduce the
symmetry of a quadrilateral...

13:47 Orellana:
So if you, for instance, colored the top half yellow and the bottom half blue,
like now we can ask the same question: what motion in space will leave it
invariant? So that somebody wouldn't be able to tell that we have moved. And
now we notice that for instance if we do like a reflection, top to bottom, right,
you can tell that I moved it because the blue went to the top and the yellow
went to the bottom.

14:15 Rockmore:
Of course, of course.

14:16 Orellana:
But so now the only possible choice seems to be that we can reflect it from
left to right.

14:24 Rockmore:
And this connection of numbers and symmetries is a real one, right?

14:27 Orellana:
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Exactly. Because in mathematics, one thing that we love to do is abstract
from what we know...

14:34 Orellana:
...here we have the numbers and this forms a set. So it's --

14:38 Rockmore:
So just a collection of entities, right, of things.

14:41 Orellana:
You see, you're combing two things that are the same in the same set and
making a new one, right? If you take an integer, like let's take -4, and you
add it to 2, we get -2, which is again in the set, and if you add 2+4, you get
6.

15:04 Rockmore:
Right, so always getting some other thing on the line there.

15:07 Orellana:
So this is an example of a binary operation, binary meaning "two". You take
two objects, you combine them, and you get a new object that is back in the
set. And this we call closure...Like the operation doesn't take you away from
the set.

15:22 Rockmore:
Okay, so we have our binary operation, and it makes sense for this collection
of integers in the sense that if I take two of them and do addition, I get
another one, right?

15:31 Orellana:
Exactly. So now you might ask, what other properties does this operation
have?
So let's say I give you 1, 2, and 3, and I ask you add them, give me the
result. If somebody's new to it, will go 1+2 and then add the third number to
that result of 1+2 or go 2+3 and add that result to the 1.

15:57 Rockmore:
Right, to 1, right.

15:58 Orellana:
So and the question is do we get the same answer when we do it in these two
ways, right? And this is the property that we call associativity.

16:09 Orellana:
So another thing that is quite an amazing thing is there’s an element such
that when I combine it with any other element, it doesn't change the value?

16:19 Rockmore:
Right, right.

16:20 Orellana:
Like, you know, is there an identity element, something that doesn't change?

16:24 Rockmore:
... an identity element, okay.

16:25 Orellana:

Yes, an identity element. If we add zero to any other integer, we get
whatever integer we obtain. So for instance, if you get four and you add it to
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zero, you get --

16:38 Rockmore:
You still have four.

16:39 Orellana:
-- four. And it doesn't --

16:40 Rockmore:
So four -- so four retains its identity.

16:32 Orellana:
So -- and even if we do it in either way, 4+0 or 0+4, you still get 4, and this
is the property of having an identity.

16:52 Orellana:
So now that you have an identity element, you might ask yourself, if I give
you an element in the set, is there an element that would give us zero? So for
instance, if I give you 3, you might come up and say, you add -3 and you get
zero.

17:10 Rockmore:
Right, so every element on the line has its negative, and those are sort of
specified by the fact that when you combine those two, you get this identity.

17:17 Orellana:
This identity element, and this is the existence of inverses.

17:22 Rockmore:
Of inverse...in this case an additive inverse.

17:23 Orellana:
An additive inverse, exactly, for the integers. So these four axioms have been
recognized as being special. You start with a set, you add closure,
associativity, you have this identity element, and you have this inverse for
every element in the set. And these four properties is what forms a group.
This is, you know, is a set with these four properties.

17:48 Rockmore:
And it's sort of amazing that out of those four axioms somehow, that you get
an incredible richness, you know, from the wallpaper groups that we saw to,
you know, groups in physics ...

17:57 Rockmore:
We've been talking about groups in a very geometric way: moving designs
around, moving shapes around. But in fact, the birth of group theory is-- was
much more formal, right, sort of closer to the algebra that people think of
being algebra, isn't that right?

18:10 Orellana:
Yeah. Usually what people think about when you say algebra, they think, you
know, high school ... but the first person to use the term "group" was Evariste
Galois.

18:21 Rockmore:
Ah, very famous mathematician, and we're going to hear his fascinating story
right now. Let's take a look.

18:26 Orellana:

Let’s take a look.
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18:28

HOST (V.0.)

A firebrand radical Republican who lived in the time of King Louis
Philippe -- Galois was just twenty years old when he solved one the
most hotly contested problems in mathematics: The problem of
solvability by radicals. And it goes like this:

"Under what conditions could you find a formula for the roots of any
polynomial in terms of the coefficients using only the usual algebraic
operations and application of radicals, square roots, cube roots, and
SO on.

18:57

HOST (V.0.)

Galois's quest was a powerful result: to be able to say for any
polynomial with integer coefficients, both when it was possible and
impossible, to find one of these simple formulas for its roots in terms
of the coefficients.

19:11

HOST (V.0.)

Galois' epiphany was to consider the symmetries of the roots of the
polynomial. The young Frenchman’s answer became known as
Galois Theory, and is the basis of modern group theory and our
understanding of the mathematics of symmetry.

19:26

HOST (V.0.)

On May 29, 1832, Galois is said to have worked through the night
desperately composing his mathematical treatise summarizing six
years of work. It was the night before he would be fatally wounded
in a duel.

19:40

HOST (V.0.)
With apparent foreboding, Galois wrote: "I have no time.”

19:46

HOST (V.0.)

While the circumstances remain murky -- the duel may have been
the result of romantic entanglement or political intrigue -- Galois’
legacy is the algebraic basis of our understanding of symmetry.

20:04

HOST

So, Galois discovered a set of conditions in terms of the symmetries of the
roots of the polynomial that could determine if the polynomial could be solved
by radicals!

20:13

HOST

But the roots are numbers, and what could it mean to consider the
symmetries of a collection of humbers? Well, let's take a step back, all the
way the back to the simple example of the quadratic formula.

Really, the quadratic formula tells us two things - the familiar one is that from
just the coefficients of the polynomial I can write down the roots. But it also
works in the other direction: knowing the roots, I can figure out the
coefficients of a polynomial that they turn into zero!

20:41

HOST
So, Galois's idea was exactly to adapt this backward point of view - and add a
very clever twist: he would use these roots as the basic ingredients to start

Mathematics Illuminated 10
Produced by Oregon Public Broadcasting for Annenberg Media © 2008




making numbers. He'd take the roots, toss in all the rational numbers too and
then see what numbers he could make taking arbitrary sums and products.
Like taking a pile of atoms and seeing what sorts of molecules you can make.
Decades later, scientists would begin to understand the properties of
molecules by determining their invariance under symmetries that mix up the
atoms. In a similar way, Galois discovered that the ability to solve a
polynomial built out of some roots depended on the invariance of those
numbers created from the roots after permuting the roots.

21:26 HOST

Permuting - it means mixing up or "shuffling" and in order to see what we
have is a group, let's actually think about shuffling, but card-shuffling. Here's
a familiar old deck of cards - and notice that any shuffle, or rearrangement of
the deck leaves it invariant. In our new language, it's a symmetry of the deck
of cards. Notice that if I do two shuffles in a row, I get another shuffle - so
closure. Notice that for every shuffle there’s an inverse shuffle — just the one
that undoes the shuffle. Not doing anything at all gives me the identity shuffle
and take my word, associativity works!

22:10 HOST

So the shuffles of a deck of cards are a group - and it turns out that the
structure of the particular "shuffles" that Galois considered on his roots are
what give the conditions for solvability by radicals. Using shuffles to
understand polynomials is a pretty good trick, but an even better one is using
the algebra of shuffles to actually understand card shuffling — which is
something that people have been doing for decades, culminating the recent
mathematical discovery that in order to mix a deck of cards by riffle shuffling -
that is it takes seven riffle shuffles to randomize an ordered deck of cards.
This was proved in 1992 by Persi

Diaconis and David Bayer.

22:56 HOST

Diaconis and Bayer identified a key signature of a shuffled deck of cards - the
number of rising sequences. Let's look at an example. I start with an ordered
deck of 10 cards, riffle shuffle them once and take a look. See how it's now
composed of 2 rising sequences, 2 sub sequences of increasing cards, and as
I continue to shuffle the order dissolves. After I do another shuffle, I expect 4
rising sequences, and then after that 8 and so on and so forth. The way in
which permutations of a given number of rising sequences compose - their
algebra — provides the key to understanding how the mathematical model of
riffle shuffling works.

23:38 HOST

This is just one example of what is in fact a very intriguing intersection of the
world of cards, and even card tricks, with mathematics. But here's another
trick - did you know that we can use symmetry to uncover virtually invisible
worlds of atoms in a crystal? Well, we can - let's take a look!

23:57 HOST
So crystallography is the study of how atoms or molecules are arranged in the

solid form.
24:04 McGRATH
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My name is Mary McGrath. I'm the Senior Director of structural chemistry here
at Gilead Sciences.

24:12 McGRATH
Our goal at Gilead is to get safe and effective drugs to patients sooner.

24:22 McGRATH

So in the field of crystallography, symmetry is very important. Symmetry tells
you how each molecule in the crystal is related to the other molecules. So we
need to know that information in order to get out our final picture of what our
protein looks like. It's also very important in just trying to complete our
experiments successfully. We need to know those relationships.

24:55 McGRATH
What we end up doing is using math as a lens to refocus our image.

25:01 McGRATH

When we are able to provide a picture in crystallography, of the protein target
to the chemists, they are able to specifically design for that protein. So what
ends up happening is you accelerate the drug discovery process. Instead of
taking ten years to come up with a potent compound, maybe now it would
take three or four years.

25:25 McGRATH

Our process has many parts to it and one of the things I really love about
being a protein crystallographer and doing structure guided drug design is
that we use techniques that have really not changed all that much for close to
100 years and we use other technology that'’s just changing all the time. So
it's a really fun blend of the traditional and the cutting edge.

25:54 HOST (V.0.)

The uncovering of symmetries in a crystal are just one example of
the use of symmetry in physics. A much more mysterious fact is that
laws of nature generally exhibit some

sort of invariance, a fact proved by Emmy Noether, perhaps the
greatest woman mathematician of the twentieth century. A prime
example is the law of conservation of

momentum that comes from the spatial invariance of the laws of
motion. Fundamentally, the world works via symmetry.

26:28 HOST

The symmetries of nature, the patterns of the Alhambra tilings, the
manipulations of mathematical equations or a deck of cards...whether we're
talking about symmetry as a property or as a transformation, it creates the
emotional responses we “feel” in the presence of beauty, whether it's art,
math... or butterflies.

26:50 CREDITS
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